Чтобы рассчитать ёмкость конденсатора с диэлектриком, можно использовать формулу:
[ C = \frac{{\varepsilon \varepsilon_0 A}}{d}, ]
где:
- ( C ) — ёмкость конденсатора,
- ( \varepsilon ) — диэлектрическая проницаемость материала (для слюды (\varepsilon \approx 6)),
- ( \varepsilon_0 ) — электрическая постоянная ((\varepsilon_0 \approx 8{,}85 \times 10^{-12} \, \text{Ф/м})),
- ( A ) — площадь пластины в квадратных метрах,
- ( d ) — расстояние между пластинами в метрах.
Теперь подставим известные значения в формулу:
- Площадь каждой пластины ( A = 15 \, \text{см}^2 = 15 \times 10^{-4} \, \text{м}^2 ).
- Расстояние между пластинами ( d = 0{,}02 \, \text{см} = 0{,}02 \times 10^{-2} \, \text{м} = 2 \times 10^{-4} \, \text{м} ).
Подставим значения в формулу для ёмкости:
[ C = \frac{6 \times 8{,}85 \times 10^{-12} \times 15 \times 10^{-4}}{2 \times 10^{-4}}. ]
Теперь рассчитаем:
[ C = \frac{6 \times 8{,}85 \times 15 \times 10^{-16}}{2 \times 10^{-4}}. ]
[ C = \frac{6 \times 8{,}85 \times 15}{2} \times 10^{-12}. ]
[ C = \frac{796{,}5}{2} \times 10^{-12}. ]
[ C = 398{,}25 \times 10^{-12} \, \text{Ф}. ]
Таким образом, ёмкость конденсатора составляет приблизительно ( 398{,}25 \, \text{пФ} ) (пикофарад).