Конечно, давайте разберем задачу по физике, связанную с расчетом силы тока в проводнике.
Дано:
- Длина проводника ( l = 10 ) м
- Площадь поперечного сечения ( A = 2 ) мм(^2) = ( 2 \times 10^{-6} ) м(^2)
- Напряжение ( U = 12 ) мВ = ( 0.012 ) В
Решение:
Для нахождения силы тока ( I ) мы используем закон Ома для участка цепи:
[ I = \frac{U}{R} ]
где ( R ) — сопротивление проводника.
Сопротивление проводника можно найти по формуле:
[ R = \rho \frac{l}{A} ]
где:
- ( \rho ) — удельное сопротивление материала. Для стали ( \rho \approx 1.0 \times 10^{-7} ) Ом·м.
Подставим значения:
[ R = 1.0 \times 10^{-7} \, \text{Ом·м} \times \frac{10 \, \text{м}}{2 \times 10^{-6} \, \text{м}^2} ]
[ R = 0.5 \, \text{Ом} ]
Теперь найдем силу тока:
[ I = \frac{0.012 \, \text{В}}{0.5 \, \text{Ом}} ]
[ I = 0.024 \, \text{А} ]
Ответ:
Сила тока в стальном проводнике составляет ( I = 0.024 ) А (или 24 мА).
Если вам нужна визуальная иллюстрация, попробуйте нарисовать схему цепи с указанием напряжения, длины проводника и направления тока, а также подставленные формулы для вычислений. Это поможет лучше понять и запомнить процесс решения.